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ABSTRACT
Intelligent systems commonly employ vision sensors like cameras
to analyze a scene. Recent work has proposed a wireless sensing
technique, wireless vibrometry, to enrich the scene analysis gen-
erated by vision sensors. Wireless vibrometry employs wireless
signals to sense subtle vibrations from the objects and infer their
internal states. However, it is difficult for pure Radio-Frequency
(RF) sensing systems to obtain objects’ visual appearances (e.g.,
object types and locations), especially when an object is inactive.
Thus, most existing wireless vibrometry systems assume that the
number and the types of objects in the scene are known. The key to
getting rid of these presumptions is to build a connection between
wireless sensor time series and vision sensor images. We present
Capricorn, a vision-guided wireless vibrometry system. In Capri-
corn, the object type information from vision sensors guides the
wireless vibrometry system to select the most appropriate signal
processing pipeline. The object tracking capability in computer
vision also helps wireless systems efficiently detect and separate
vibrations from multiple objects in real time.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Computer systems organization→
Real-time system architecture.
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1 INTRODUCTION
Real-world scenes are often complicated and rapid-changing, and
intelligent systems must continuously analyze the scene surround-
ing them using sensory data to build situational awareness. For
objects in a scene, some extrinsic properties like shape, location,
and color can be easily acquired from vision sensors. In this domain,
video-based scene analysis has achieved great success [1]. However,
objects still possess some intrinsic properties invisible to vision
sensors. Some of the intrinsic properties can be manifested as tiny
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movements, i.e., vibrations. For example, vibrations can tell the op-
erating states of a machine for industry monitoring or the usage of
appliances in a smart home. Previous works in the wireless sensing
community have proposed sensing vibrations using mmWave [2],
WiFi [6], or ultra-wideband (UWB) radar [5] to infer the intrinsic
states of objects. However, these RF sensing techniques have dif-
ficulties building connections between their inference results and
real-world objects because they have no information about these
objects’ extrinsic properties. Their acquired RF data are time series
that are difficult to decipher without knowing what the object is.
Also, these systems either target a single object or require a blind
search to identify the vibrations, which is error-prone and can not
work for inactive objects. In this demo abstract, we propose a mul-
timodal sensor fusion system that combines LiDAR, camera, and
UWB radar for a rich semantic labeling of a complex scene.With the
fusion of the three modalities, we can infer each object’s extrinsic
properties, as well as their intrinsic states based on their vibrations.

2 SYSTEM DESIGN
Capricorn’s architecture is presented in Figure 1, where blue blocks
indicate system components, red stands for algorithms, and yel-
low means exchanged information. Capricorn takes a late fusion
approach, where sensors can make individual inferences while shar-
ing and exchanging their inference results via a shared in-memory
database via queries (marked as orange arrows).

First 1 , the camera processes its images using state-of-the-art
object detection and recognition algorithms such as YOLOv5 [3]. A
tracker based on Kalman filtering and the Hungarian algorithm is
then applied to obtain object ID, object bounding boxes, and object
types. Second 2 , the LiDAR aligns its frame with the camera.
Then Capricorn queries the objects’ bounding boxes and combines
the LiDAR’s depth map with these bounding boxes to generate a
depth histogram for each object, with which the distances from
the sensor to each object can be estimated. Third 3 , the UWB
radar sends pulses continuously to probe the scene to generate a

Figure 1: An overview of Capricorn.
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Figure 2: Implementations and results: (a) System hardware (b) Machine states estimation in a workshop (c) Appliance states
estimation in a smart home (d) Multi-person respiration rate estimation
two-dimension range profile, where the y-axis is the time, and the
x-axis is the distance calculated using the signal-time-of-flight (ToF).
When Capricorn queries the objects’ distance, Capricorn uses this
information to take slices in the x-axis from the 2D range profile (se-
lect a signal distance bin for each object). This step assures that we
do not have to blindly search for active objects over all the distances
and that there is a one-on-one mapping between objects’ images
and their time series. Fourth 4 , we perform post-processing on
each object’s RF time series data and generate estimations about
their states. This step is designed modularly: the optimal algorithms
andmodels for processing the objects’ data are different for different
types of objects. Thus, we query each object’s type from the data-
base, create a thread for each object, and apply the most appropriate
signal processing pipeline. For example, simple SVM models are
used to classify the operating states of home appliances, and Vari-
ation Mode Decomposition-based respiration rate estimation [7]
is performed for human subjects. Finally, we visualize the scene by
overlaying all the inference results over the camera’s images ( 5 ).

3 IMPLEMENTATION AND RESULTS
Capricorn’s multimodal sensor module is implemented with an In-
tel RealSense LiDAR Camera L515 and a Novelda AS Xethru X4M05
Radar sensor. We implemented the entire software architecture in
C++ using ROS [4], where we utilized the Pub-Sub mechanism in
ROS for real-time sensor data collection and processing. All the com-
putations occur on an Intel NUCmini PC except that the UWBRadar
driver runs on a Raspberry Pi under the same local area network.

Our results show that Capricorn can simultaneously monitor
multiple home appliances’ operating status and recover vital signals
like respirations from multiple people in real-time (see Fig 2(b-d)).
Fig 2(b) shows a setting simulating industrial assembly lines or
workshops, where it is crucial to monitor the operating states of
machines to promote safety and productivity. We placed four drills
that are turned on and off in front of Capricorn, exhausting all
possible combinations. On average, Capricorn achieves an accuracy
of 99.47% classifying the on/off states of themachines. Fig 2(c) shows
a smart home setting where we can use Capricorn to understand the
operating states of home appliances, e.g., the rotating speed level of
a table fan and whether a washing machine is performing washing,
is performing drying, or is idle. In Fig 2(d), we show Capricorn
can simultaneously monitor multiple subjects’ respiration rates at
a median error of 0.9603 bpm and associate the breath rate with
the image of that person. This capability can be helpful in medical
triage situations where we must simultaneously assess multiple
wounded’s conditions. Capricorn can process the LiDAR-camera
information at a latency of 42.81 ± 6.30 ms without any hardware
accelerator and process radar information at less than 200ms for
non-human subjects (on a 1.024s buffer) and 2 seconds for human
subjects (on a 30-second buffer).

4 DISCUSSIONS AND CONCLUSIONS
In this abstract, we presented a vision-guided wireless vibrometry
system for real-time rich scene analysis. Using a more computa-
tionally intensive sensing modality (vision) to guide a less intensive
modality (RF) seems counter-intuitive at first glance. However, as
a unique sensing modality that perceives the world similarly to a
human, the camera is pervasive in intelligent systems for scene
analysis and is unlikely to be entirely replaced. On that basis, this
work demonstrates that the information acquired from computer
vision can help us make more sense of the RF data and improve
the versatility of RF systems in dynamic environments where the
number and the type of the sensing target objects are all uncertain.
Correspondingly, the RF sensors can compensate the vision sen-
sors by making inferences about the objects’ intrinsic states that
are invisible to cameras, resulting in a “richer” scene analysis. In
the design of Capricorn architecture, the key concept is that the
inferences from one sensor can serve as the prior information for
the processing of another sensor. This information sharing and
exchange improve the efficiency of the multimodal sensing system.
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