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Figure 1: Three keyboards for vibration-based on-body interaction. (a) dial keyboard, (b) direction keyboard, (c) one-hand
control

ABSTRACT

Wearable devices like smartwatches and smart wristbands have
gained substantial popularity in recent years. However, due to the
limited size of the touch screens, smartwatches typically have a
poor interactive experience for users. Recently, new technology
has converted the human body into a virtual interface using finger
activity induced vibrations. However, these solutions fail to meet
expectations during real-world deployments, e.g., system perfor-
mance significantly degrades due to human-based variations, such
as hand shapes, tapping forces, and device positions. To mitigate
these human-based variations, we collected a dataset of 114 users,
built a deep-learning model, and designed a novel Siamese domain
adversarial training algorithm. In this way, we implement a robust
system which works at accuracy (97%) across different hand shapes,
finger activity strengths, and smartwatch positions on the wrist.
We have posted a demo video on YouTube (https://youtu.be/N5-
ggvy2qfI).
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1 INTRODUCTION

Smart wearable devices, especially smartwatches and fitness wrist-
bands, have become pervasive in the industry and are promising
computing platforms [5, 7]. However, by necessity, a smartwatch
is relatively tiny compared to traditional computing devices (e.g.,
laptops and smartphones). Input technologies for traditional com-
puting devices cannot be easily replicated on wearable devices
because of their size disparities. As a modern representative of
wearable devices, a smartwatch uses a built-in capacitive screen as
the surface for both input and output. Unfortunately, the relatively
small screen size limits the richness of interactions. For example,

"fat-finger" errors may not be a significant problem on smartphone
screens. However, this problem is significantly exaggerated on a
smartwatch.
Many researchers have sought to use the body areas surround-

ing the smartwatch as an extended input surface using sensors on
their customized devices, such as laser, electromagnetic, camera,
and vibration sensors. However, these customized devices remain
as prototypes and are not widely deployed. Therefore, some re-
searchers used commodity smartwatches to achieve on-body inter-
action through acoustic or ultrasonic sensors. Unfortunately, these
solutions are sensitive to surrounding noise or have high power
consumption. Most recently, a new on-body tapping interaction
technique, Taprint [2], has gained much attention. This technique
only used a single inertial measurement unit (IMU), which is al-
ready in commodity smartwatches and has relatively low power
consumption [2]. This technique enables the IMU sensor to detect
and recognize tapping-induced vibrations at different hand loca-
tions. Then, users can tap on different parts of the hand and use
them as shortcuts to launch smartwatch apps, remote controllers
for smart glasses, and joysticks to play games. Because of the effi-
ciency and accessibility of this technology, many companies have
started to build new smartwatches featuring this technology this
year, such as the Apple Watch with AssistiveTouch, the Huawei
Watch 3, and the Madgaze Watch.

Although this on-body tapping technology receives enthusias-
tic market responses, it unfortunately still has many real-world
challenges [4, 6]. For example, different users have different hand
shapes. To ensure the system performance, users have to provide
data for initial training or calibration before the first usage, which is
exhausting and not user-friendly [2, 3]. Worst of all, system perfor-
mance significantly degrades in the real world when users perform
finger activities with different strengths or when the smartwatch
slips to a different locations on the wrist.
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These challenges raise the question we try to tackle in this work:
can we make this vibration-based on-body interaction system ro-
bust to those human-based variations without any personal initial
training/calibration? In recent years, human-based variation prob-
lems have been investigated in IMU signal recognition of large-scale
movements such as human activities [1]. However, to the best of our
knowledge, there is no work that studies the human-based variation
problems during the recognition of fine-grained finger movements
such as tapping vibrations. Toward this end, we propose a system,
namely ViWatch, to make the vibration-based on-body interaction
robust for deployment in the real world.

2 VIWATCH

We classify the vibration-based on-body interaction scenarios into
three categories: dial keyboard, direction keyboard, and one-hand
control (see Figure 1): Figure 1 (a) maps 12 knuckles into a dial
keyboard. Users can use this keyboard to dial numbers and type
sentences. Figure 1 (b) has four direction "buttons" on the back of
the hand and two "buttons" on the arm. This direction keyboard
can control a wide variety of applications, such as playing games or
switching menus. Figure 1 (c) shows six one-hand gestures. Users
can open the palm or make a fist to zoom in and zoom out a car
GPS map; swing the palm to the left/right to switch TV channels,
music or slides; pinching three fingers to take a photo and snapping
the fingers to take a video.

However, it is challenging to develop ViWatch. In order to make
the system work without requiring users to collect and label ini-
tial training data before first usage, we recruited 114 volunteers
to tap on various locations of their bodies. This large amount of
volunteers’ data covers different hand shapes, different tapping
strengths, and different smartwatch positions on the wrist. With
this multi-user dataset, we then designed a deep learning model to
train a general model. However, this general model comes with a
natural trade-off: contrary to individual models for particular users,
an "average" model that works for all users covers more human-
based variations, but may have a lower per-user accuracy. Further,
while we have taken measures to battle over fitting, the accuracy
for completely new (unseen) users may still suffer if the training
data collected from volunteers is insufficient and does not cover
the unseen users’ data characteristics. Inspired by online learning
and domain adaptation, we question whether we can continuously
improve the model by using the data generated from new users’
daily usage without them noticing. However, these daily generated
data have no labels. Thus, we utilized an unsupervised domain
adversarial neural network (DANN) to match those human-based
variations (domains). Unfortunately, it is impractical for DANN to
separated hundreds of domains with cross-entropy loss because
it was designed for two domain adaptation problem. To address
this problem, we modified the DANN and optimized its domain
discriminator with Siamese contrastive training. With this series of
methods, we make vibration-based on-body interaction robust in
the real world.

We have implemented ViWatch as a standalone application pro-
gram on a commodity Android smartwatch, Huawei Watch 2. Vi-
Watch utilizes the built-in accelerometer and gyroscope and ac-
quires the motion readings through existing Android Wear APIs
to detect the on-body tapping induced vibrations. The sampling
rate through the APIs is 100 Hz. We trained the neural network

models in Pytorch 1.5.1 on a desktop computer. PyTorch supports
an end-to-end workflow from Python model training to Android
model deployment (via the PyTorch Android API). After training
the model, we implement all the components of our system includ-
ing signal processing and neural network classification on a COTS
smartwatch to classify the on-body tapping in real-time. To collect
users’ unlabeled data during daily usage for updating models, we
used network socket with IP addresses to send collected data from
the smartwatch to the server and send back updated models to
the smartwatch. Our implementation achieves a real-time on-body
tapping input without noticeable latency (0.2 seconds).

3 DEMONSTRATION

Wewill play a demo video to demonstrate our system (https://youtu.
be/N5-ggvy2qfI). In this video, we developed several representative
exemplar applications using ViWatch as the input surface. For exam-
ple, we switch slides and zoom in or zoom out the screen hands-free.
Also, we built remote controls for smartglasses to switch menus,
play videos, and adjust volumes. By tapping on the hand coupled
with the watch on the wrist, we can play games on the TV or solely
on the watch. Furthermore, a simple tap on the skin will provide us
with a shortcut to any app we need. We can also control the smart-
phone camera remotely: tap our fingers to take a photo, snap to take
a video, and tap on the hand to switch different cameras. We can
also pick up or end a phone call without interacting directly with
the phone. This system does not require any initial training process
or calibration before the first usage, and it is robust in real world
deployment. Any user can wear the smartwatch and immediately
begin using the system out of the box. As you can see in the video,
ViWatch is great performance with different arm orientations and
works whether users are standing, seated or lying down. Users can
use it with different tapping strengths. Users can use any finger
to tap on the skin and they don’t need to worry if the smartwatch
changes positions on the wrist. The versatility of this system even
allows users to use it while walking and with a wet hand. This in-
novative system also works across different types of smartwatches.
Besides the demo video, we will demonstrate the system live on
how the smartwatch interacts and controls the computer.
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