

UWHear: Through-wall Extraction and Separation of Audio Vibrations Using Wireless Signals

<u>Ziqi Wang</u>¹, Zhe Chen², Akash Deep Singh¹, Luis Garcia^{1,} Jun Luo², and Mani B. Srivastava¹ ¹ University of California, Los Angeles, Electrical and Computer Engineering Department ² Nanyang Technological University, Singapore, School of Computer Engineering

Audio Sensing and Sound Event Detection

• An ability to detect, classify, and localize complex acoustic events can be a powerful tool to help smart systems build context-awareness

time

each event with sound class label + onset and offset timestamps

A typical example of sound event detection and classification systems. Flow chart from http://dcase.community/challenge2019/task-sound-event-detection-in-domestic-environments

Dual Challenges for Audio Sensing

UCLA Samueli

Multiple Target Sounds

 Audio sensing and downstream processing are negatively affected by background noise and cross-interference between target sound sources.

Goal: Separate Sound from Multiple Sources

• A desired audio sensing system should be able to:

UCLA Samueli

1 Record audio signals from vibrations

2 Separate sounds from multiple sources

③ Work in non-line-of-sight (NLOS) scenarios

Audio Sensing: Microphone vs Wireless Signals

- A traditional microphone passively captures the sound pressure wave.
- Multiple target sounds and noise are blended?

UCLA Samueli

Wireless Vibrometry

• Wireless Vibrometry is about recovering information from vibrating objects, e.g. speakers, engines......

- Can be used to recover sound directly from its source vibrations
 - Previous works isolates one sound of interest by focusing a highly directional beam on its source

Wireless Vibrometry Using IR-UWB Radar

• Impulse-Radio Ultra Wideband (IR-UWB) works by sending out a train of very short Gaussian pulses and collect reflection pulses.

UCLA Samueli

chool of Engineering

Wireless Vibrometry Using IR-UWB Radar

• Impulse-Radio Ultra Wideband (IR-UWB) works by sending out a train of very short Gaussian pulses and collect reflection pulses.

Wireless Vibrometry Using IR-UWB Radar

. . .

/··········

UCLA Samueli

	Impulse-Radio Ultra Wideband (IR-UWB) Radar
Sound Separation	 Operates with very short pulses (large bandwidth) Use fine enstiel resolution to concrete multiple sources
	 Has line spatial resolution to separate multiple sources Measures the distance to the targets with Time-of Flight
Sound Recovery	 Can detect subtle target movements with RF phase (To be shown in the next section)
	$\sim Marko at aub 100 Hz band$
NLOS	 Can Penetrate light building materials
Practical	 Is incorporated on mobile platforms (e.g., iPhone 11) Is low-cost and has low power consumption
	\sim 13 10 % 00 % and has 10 % power consumption

Audio Sensing: Microphone vs Wireless Signals

• **UWHear** is a system that uses Impulse Radio Ultra-Wideband (IR-UWB) to separate and recover sounds from multiple sources simultaneously.

Data Structure: Fast time and Slow time

UCLA Samueli

UCLA Samueli School of Engineering

Baseband Gaussian pulse: g(t)

Transmitter Output:

 $x(t) = g(t - kT_s)\cos(2\pi f_c(t - kT_s)),$

Baseband Gaussian pulse: g(t)

Transmitter Output:

UCLA Samueli

$$x(t) = g(t - kT_s)\cos(2\pi f_c(t - kT_s)),$$

Down Conversion (Demodulate) to Baseband:

 $y_{in-phase}(t) = LPF[y(t) \times cos(2\pi f_c(t - kT_s))]$

 $y_{quad}(t) = LPF[y(t) \times sin(2\pi f_c(t - kT_s))]$

Apply Sound Source Separation using ToF

UCLA Samueli

Linear Approximation

The I/Q data $\approx V_{\rm tx}$ Time-varying phase offset caused by speaker p₀ vibration $y_{in-phase}(t_p) = \frac{1}{2} \alpha_{p_0} g(T_{p_0}^D(t_p)) \cos(2\pi f_c T_{p_0} + 2\pi f_c T_{p_0}^D(t_p)) + \tilde{n}(t_p).$ $y_{quad}(t_p) = \frac{1}{2} \alpha_{p_0} g(T_{p_0}^D(t_p)) sin(2\pi f_c T_{p_0} + 2\pi f_c T_{p_0}^D(t_p)) + \tilde{n}(t_p).$ Linear approximation 2+ V_{tx} Sine and Cosine Function Gaussian Pulse

$$y_{\text{in-phase}}(t_p) = \frac{1}{2} \alpha_{p_0} V_{\text{tx}} \cos \left(2\pi f_c T_{p_0} + 2\pi f_c T_{p_0}^D(t_p) \right)$$

$$y_{\text{quad}}(t_p) = \frac{1}{2} \alpha_{p_0} V_{\text{tx}} \sin \left(2\pi f_c T_{p_0} + 2\pi f_c T_{p_0}^D(t_p) \right)$$
• Linear approximation

2†

• Example:
$$mod(2\pi f_c T_{p_0}, 2\pi) \approx 0$$

 $y_{quad}(t_p) = \frac{1}{2}\alpha_{p_0}V_{TX}2\pi f_c T_{p_0}^D(t_p)$

- In this example, the **speaker vibration movement** is proportional to **quadrature amplitude** change
- In other cases, the speaker displacement is proportional to **in-phase** amplitude change

UWHear System Design

System Overview

Hardware Implementation

- XeThru X4M05 UWB Radar Sensor
- Controlled and sending data to Raspberry Pi 3B+ via SPI interface
- Gaussian pulses with 1.4 GHz bandwidth centered at 7.29GHz
- Can comply with FCC regulations, Sampling rate 1.5 kHz

UCLA Samueli

Results

Distance to Sound Sources

UCLA Samueli

- Measured the distance to the sound sources
- The mean error is 11.19cm, the median error is 11.37cm, σ =4.88cm.

Effective Range

6-8m in Free Space

(a)

UCLA Samueli School of Engineering

2.5m through a wooden wall

Demo: Sound Separation

- Two speakers put at different distances and playing different contents
- One at 58cm playing *Mary has a little lamb*
- The other at 122cm *playing Twinkle twinkle little star*
- Please see the demo on the next page

Further results demonstrate that if two sources are placed **25 cm** apart, their sounds can be recovered separately without any cross-interference.

Dealing with Heterogeneous Sound Sources

- We tested UWHear in a more natural household setting
- Sound Source: Washing Machine, Vacuum Cleaner

UCLA Samueli

School of Engineering

Noise Source: Wall AC Unit

Limitations and Future Work

• Increase Sampling Rate:

UCLA Samueli

- The current sampling rate (Fs = 1.5kHz) causes low sound quality
- Fs is mainly limited by the SPI interface transmission speed
- Using FPGA as the host may help
- Increasing Field-of-View (FoV)
 - Current directional antenna gives 50 degrees of FoV
 - Novel hardware design may use omnidirectional antenna / MIMO
- Multi-model Sensing Platform
 - UWHear cannot retrieve sound from human throat directly
 - Multiple Wireless Signals at different bands can compensate for each other
 - IR-UWB has more potentials then sensing vibration

Thank you!

