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Audio Sensing and Sound Event Detection

e An ability to detect, classify, and localize complex acoustic events can be a
powerful tool to help smart systems build context-awareness
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A typical example of sound event detection and classification systems. Flow chart from
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Dual Challenges for Audio Sensing

Noise / Non-target sound

Multiple Target Sounds

® Audio sensing and downstream processing are negatively affected by
background noise and cross-interference between target sound sources.
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Goal: Separate Sound from Multiple Sources

e A desired audio sensing system should be able to:

(1) Record audio signals from vibrations
(2) Separate sounds from multiple sources

(3) Work in non-line-of-sight (NLOS) scenarios
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Audio Sensing: Microphone vs Wireless Signals

e A traditional microphone passively captures the sound pressure wave.
e Multiple target sounds and noise are blended?
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Sound sources
inthe
adjacent room

Target sounds fused together

e Recognition Fails
Traditional X 8

1.5 2 2:5
Time <10°
Microphone Microphone Recordings (1D)

® Can we actively measure the sounds from their
source vibrations?
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Wireless Vibrometry

e Wireless Vibrometry is about recovering information from vibrating
objects, e.g. speakers, engines.......

e (Can be used to recover sound directly from its source vibrations
o Previous works isolates one sound of interest by focusing a
highly directional beam on its source
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Wireless Vibrometry Using IR-UWB Radar

e Impulse-Radio Ultra Wideband (IR-UWB) works by sending out a
train of very short Gaussian pulses and collect reflection pulses.
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Wireless Vibrometry Using IR-UWB Radar

e Impulse-Radio Ultra Wideband (IR-UWB) works by sending out a
train of very short Gaussian pulses and collect reflection pulses.
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Wireless Vibrometry Using IR-UWB Radar

e Impulse-Radio Ultra Wideband (IR-UWB) Radar

Sound Separation ©

©)
©)

Sound Recovery

NLOS

Practical

Operates with very short pulses (large bandwidth)
Has fine spatial resolution to separate multiple sources
Measures the distance to the targets with Time-of Flight

Can detect subtle target movements with RF phase
(To be shown in the next section)

Works at sub-10GHz band
Can Penetrate light building materials

Is incorporated on mobile platforms (e.g., iPhone 11)
Is low-cost and has low power consumption
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Audio Sensing: Microphone vs Wireless Signals

e UWHear is a system that uses Impulse Radio Ultra-Wideband (IR-UWB) to
separate and recover sounds from multiple sources simultaneously.
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IR-UWB Audio Sensing Theory




UCLA samueli
School of Engineering

Data Structure: Fast time and Slow time

Challenge: Speaker displacement ~mm
level, UWB spatial resolution ~cm level

T2 = kTS + sz /
Sow A Ti=KTs+Tp| | [Ts=KTs+Tps SIowA
Time Frame 4 %Vw%«w'av— Time Frame 4 @ s
Frame 3 s Frame 3 /,@ b
Frame 2 — Frame 2%
Frame 1 — Frame 1 \\ ll
I ) - )

I
Fast Time = ToF « Target Distance Fast Time
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IR-UWB Audio Sensing Theory
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IR-UWB Audio Sensing Theory

>)

Baseband Gaussian pulse: g(t) A\

Transmitter Output: z(t) = g(t — kT)cos(2m fo(t — kTy)),
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IR-UWB Audio Sensing Theory

4 )
cos(2m f.t) z(t)

g(1) é

\_ y,
Transmitter

Baseband Gaussian pulse: g(t)

Transmitter Output: z(t) = g(t — kT)cos(2m fo(t — kTy)),
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IR-UWB Audio Sensing Theory

P
(1) y(1)
v I
— ()

Environment

Environment Response Caused by the placement distance of speaker p
P
h(t) = 3 et 41, HTP ()
p=1 Caused by vibration of speaker p

RF Received Signal
y(t) =z(t) = h(t) + n(t) The phase of received RF signal

P is proportional to speaker vibration

=Y opg(t — kT, — T, — T.)(t))cos(2n f.(t — kT, — T, =T, (t))) + n(t).

p=1




Down Conversion (Demodulate) to Baseband:

Yin—phase(t) = LPF[y(t) x cos(2m f.(t — kT}))]

Yquad(t) = LPF[y(t) x sin(2m fo(t — KT5))]

cos(2m f.t)

InPhase

®

Low-pass Filter (LPF) Y.

Low-pass Filter (LPF) )

Quadrature

sin(27 f.t)

J
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Apply Sound Source Separation using ToF

Apply sound source separation ToF caused by the placement distance of speaker pg

Select a particular sound source by fixing ¢ =1p = kT, + Tpo

t=1t, :kT + 15,

SIowA
Time || Frame 4 —i—*'*‘*—

Data Matrix
Frame 3 —JI—H—
(In-phase or Quadrature) Sl i
Frame 2 —’F'FH

Frame 1 —‘FW*—
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Fast Time
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Linear Approximation

e Thel/Qdata <~ Vix Time-varying phase offset caused by speaker p, vibration

1 .
Yin—phase(tp) = Eaml;(Tplg (tp) |003427r feTpo M2 fT0 (tp)) + 7u(t).
Constant phase offset caused by the distance of speaker py

1 , N
Yquad (tp) = §O‘pog(T£ tp))sin(2m f Ty, + 27 f D(tp)) +n(tp).

e Linear approximation

Gaussian Pulse Sine and Cosine Function
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IR-UWB Audio Sensing Theory

1
yin—phase<tp) = Eapov’txcos (27TfCTpo+27TfCT£(tp>) . AV ' ‘ , \}

1 :
yquad(tp) = Eapo Vix sin (

e Linear approximation

e Example: mod(2rf.T,,,2m) ~ 0

1
yquad(tp) — §ap0VTX27rf

e In this example, the speaker vibration movement is proportional to

quadrature amplitude change
e In other cases, the speaker displacement is proportional to in-phase

amplitude change
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IR-UWB Audio Sensing Theory
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IR-UWB Audio Sensing Theory

Transmitter

. Transmitte
Gaussian q
Pulse RF Pulse
IR-UWB Signal

Vibration-related Information

Environment
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Change

Receiver

Received
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UWHear System Design
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System Overview
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Hardware Implementation

- XeThru X4M05 UWB Radar Sensor

« Controlled and sending data to Raspberry Pi 3B+ via SPI interface
« (@Gaussian pulses with 1.4 GHz bandwidth centered at 7.29GHz

« Can comply with FCC regulations, Sampling rate 1.5 kHz
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Signal Processing Pipeline
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Signal Processing Pipeline

[ Raw UV|VB Data ]
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Signal Processing Pipeline
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Signal Processing Pipeline

[ Raw UWB Data ]
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Signal Processing Pipeline

[ Raw UWB Data ]
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Signal Processing Pipeline

[ Raw UWB Data ] Before After
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Signal Processing Pipeline

[ Raw UWB Data ]
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Results
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Distance to Sound Sources

e Measured the distance to the sound sources
e The mean error is 11.19cm, the median error is 11.37cm, 0=4.88cm.

Empirical CDF
I I

O | | | | | | |
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Effective Range
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Demo: Sound Separation

Two speakers put at different distances and playing different contents
One at 58cm playing Mary has a little lamb

The other at 122cm playing Twinkle twinkle little star

Please see the demo on the next page
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Further results demonstrate that if two sources are
placed 25 cm apart, their sounds can be recovered
separately without any cross-interference.
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Dealing with Heterogeneous Sound Sources

o We tested UWHear in a more
natural household setting

e Sound Source: Washing
Machine, Vacuum Cleaner

e Noise Source: Wall AC Unit

Distance Bins

(C) Short-Time Fourier Transform (d) Short-Time Fourier Transform

Magnitude (dB)
Frequency (Hz)
°
Magnitude (d8)

-10

1 2 3 4 5 6 7 8 9 1 2 3 4 | 6 7 8 9
Time (s) Time (s)

Vacuum Cleaner Washing Machine
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Limitations and Future Work

e Increase Sampling Rate:
o The current sampling rate (Fs = 1.5kHz) causes low sound quality

o Fsis mainly limited by the SPI interface transmission speed
o Using FPGA as the host may help

e Increasing Field-of-View (FoV)
o Current directional antenna gives 50 degrees of FoV
o Novel hardware design may use omnidirectional antenna / MIMO

e Multi-model Sensing Platform
o UWHear cannot retrieve sound from human throat directly
o Multiple Wireless Signals at different bands can compensate for each other
o IR-UWB has more potentials then sensing vibration

39
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Thank you!
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