

Capricorn: Towards Real-time Rich Scene Analysis Using RF-Vision Sensor Fusion

Ziqi Wang, Ankur Sarker, Jason Wu, Derek Hua, Gaofeng Dong, Akash Deep Singh, and Mani B. Srivastava

University of California, Los Angeles, Electrical and Computer Engineering Department

- Situation awareness (SA) is crucial to smart systems
- SA requires the collection and analysis of sensory data to estimate the states of an environment

Examples

Object Type Shape Color Location ...

Semantic Labelling

Examples

Human:

Health/ Emotions

Washing Machine:

Wash/ Dry/ Idle

Fan:

Speed Settings

. .

Computer Vision for Extrinsic States

Object Detection and Recognition

Semantic Segmentation

Localization and Mapping

Wireless Vibrometry for Intrinsic States

Signal reflect on the surface Modulated by vibration

Emit a probing RF signal

Washing machine State: washing

Wireless Vibrometry for Intrinsic States

(Vi2Fi, IMWUT'20)

Vital Signals / Activities from Human Operating States of Industrial Machinery (mmVib, MobiCom'20)

Usage of Home Appliances (UWHear, SenSys'20)

RF Signals Require Context to Make Sense

 Presumed object type: existing wireless vibrometry sensing systems presuppose the existence of a particular type of object (e.g., a person) in the scene to process the signal accordingly.

RF Signals Require Context to Make Sense

- Presumed object type: existing wireless vibrometry sensing systems presuppose the existence of a particular type of object (e.g., a person) in the scene to process the signal accordingly.
- Presumed number of objects: existing systems either target at a fixed number of subjects or rely on threshold-based search algorithms

RF Signals Require Context to Make Sense

- Presumed object type: existing wireless vibrometry sensing systems presuppose the existence of a particular type of object (e.g., a person) in the scene to process the signal accordingly.
- Presumed number of objects: existing systems either target at a fixed number of subjects or rely on threshold-based search algorithms

Examples

Object Type Shape Color Location ...

Semantic Labelling

Examples

Human:

Health/ Emotions

Washing Machine:

Wash/ Dry/ Idle

Fan:

Speed Settings

. . .

Examples

Object Type Shape Color

Multiple sensing modalities can offer complimentary capabilities

LAUIIIPIOO

Human:

Health/ Emotions

Washing Machine:

Wash/ Dry/ Idle

Fan:

Speed Settings

...

Our Insights: Multimodal Sensor Fusion

- Presumed object type: existing wireless vibrometry sensing systems presuppose the existence of a particular type of object (e.g., a person) in the scene to process the signal accordingly.
- Presumed number of objects: existing systems either target at a fixed number of subjects or rely on threshold-based search algorithms
- Multiple sensing modalities can offer complimentary capabilities
- The shared geometry information (e.g., angle/distance) can be used to combine RF modalities and camera-like sensors
- One sensor's inference can become the prior information for another and expedite the signal processing algorithms

Capricorn Design

Camera frame

Capricorn Design

 The shared geometry information (e.g., angle/distance) can be used to combine RF modalities and camera-like sensors

Capricorn Design

Capricorn Design

Implementations

- UWB Radar: Xethru X4M05
- LiDAR-Camera: Intel RealSense L515
- UWB Radar Host: Raspberry Pi 4B
 - Cortex-A72 Processor
 - o 8 GB RAM
- Main Computation: Intel NUC
 - Intel i7-6770HQ CPU
 - 16 GB RAM
 - No GPU or any hardware accelerator

Hardware platform

Sample Applications: It's all real-time!

Workshop scene: drill state detection

Sample Applications: It's all real-time!

SmartHome scene: appliance usage tracking

Vibration = Washing

Washing

Vibration = None

Interaction = True

Wash Done

Alarm=1

Provide a **richer** set of **atomic events** for complex event detection

Sample Applications: It's all real-time!

Multi-person respiration rate estimation

Limitations and Future Work

Integrate More Sensing Modalities:

- Currently we integrate a LiDAR camera and a UWB Radar
- More sensing modalities will bring in richer information about the scene
- e.g., Thermal camera, mmWave Radar,

Enable Mobility:

- Current system is mounted statically on a tripod
- Mobility will give us more perspectives and a better scene understanding
- SLAM on robots will enable the system to explore a totally new environment

Applications:

- Integrate sensor fusion information into AR/VR platform
- Create an enhanced "digital twin" between the physical and virtual world
- Neural symbolic-based complex event detection

UCLA Samueli School of Engineering

Thank you!

Backup Slides

(x,y) coordinates Object Type

(x,y) coordinates **Distance**

RF-Vision Association

Vibration information

ToF

Comparison

ToF

ToF

Multi-view Capricorn

Multi-view version to distinguish objects at the same distance

Back Up Slides: Latency

Capricorn Component	Mean(ms)	Std(ms)
Camera/Depth Pub-Sub Delay	1.08	0.13
YOLOv5	38.35	5.25
YOLOv5 (GPU)	6.28	1.29
Whole Extrinsic Sensing Pipeline	42.81	6.3
UWB Chunk Pub-Sub Delay	171.61	21.87

Table 2: Latency analysis of Capricorn in the appliance usage classification scene.

