

ACUITY: CREATING REALISTIC DIGITAL TWINS

THROUGH MULTI-RESOLUTION POINTCLOUD PROCESSING AND AUDIOVISUAL SENSOR FUSION

Jason Wu, Ziqi Wang, Ankur Sarker, Mani Srivastava (UCLA)

01

INTRODUCTION

HOW TO REPRESENT HUMAN SUBJECTS AUDIOVISUALLY AT HIGH FIDELITY IN REAL TIME?

VISUAL DOMAIN GOALS

Point Clouds

Avatars

VISUAL DOMAIN GOALS

Obtain High Resolution Point Clouds

Isolate point clouds of human subjects

Place within virtual scene

VISUAL: CURRENT CHALLENGES

- Existing neural networks trained on sparse point clouds input from KITTI Dataset
- Suffer from runtime issues
- Generalize poorly to dense point cloud input

KITTI Point Cloud (Sparse)

Realsense Point Cloud (Dense)

VISUAL: CURRENT CHALLENGES

Example: Failure Cases of NN-based Human Subject Bounding Box Detection

CHALLENGE

How do we isolated human subjects from dense point clouds in real time?

AUDIO DOMAIN GOALS

- Audio quality degrades with high background noise or background speech
- **Sound Source Separation:** Leverage beamforming with microphone array to isolate sound from particular direction
- Requires the angle of arrival (AoA) to be known

AUDIO: CURRENT CHALLENGES

+

- AoA Estimation Methods: SRP-PHAT and MUSIC
- Learning based methods: We require real-time, mobile subjects, and variable number of subjects

MUSIC Localization: 2 Subjects

9

AUDIO: CURRENT CHALLENGES

+

AoA Estimation Methods: SRP-PHAT and MUSIC

 Learning based methods: We require real-time, mobile subjects, and variable number of subjects

Missing Subject

MUSIC Localization: 2 Subjects

AUDIO: CURRENT CHALLENGES

AoA Estimation Methods: SRP-PHAT and MUSIC

Learning based methods: We require real-time, mobile subjects, and variable number of subjects

"Ghost" Subjects

CHALLENGE

How do we obtain the AoA in real time?

ACUITY

DOUBLE BACKGROUND SUBTRACTION PIPELINE

- Leverage **background subtraction** at two resolutions to efficiently isolate point clouds
- Runs at 30 fps with resolution of 640x480 and three subjects in the scene

MULTIMODAL FUSION WITH VISUAL LOCALIZATION

- Leverages localization information from the visual pipeline to obtain AoA (audiovisual fusion)
- Uses the centroid of the isolated point cloud
- Latency of 30 ms (< 45 ms)

-

11

02

SYSTEM DESIGN AND IMPLEMENTATION

+

ACUITY PIPELINE

POINT CLOUD PROCESSING

- +
- **Background subtraction:** Compare each new frame with reference frame without subjects. Removes all the *voxels* (points) that are identical
- Apply clustering to remove noise

CHALLENGE

Background Subtraction and Clustering do not run in real time

SOLUTION

Utilize **multi-resolution** processing!

MULTI RESOLUTION PROCESSING

AUDIO PROCESSING

AUDIO PROCESSING

AUDIO PROCESSING

03

EXPERIMENTS AND RESULTS

+

EXPERIMENTAL SETUP

Experiment 1: Three Stationary Subjects

Experiment 2: Two Mobile Subjects

VISUAL DOMAIN RESULTS

Visual Point Cloud Output

	Acuity (Ours)			PV-RCNN++			SECOND		
Number	Latency	Aggurgay	Average	Latency	Accuracy	Average	Latency	Accuracy	Average
of Subjects	(ms)	Accuracy	F1 Score	(ms)		F1 Score	(ms)		F1 Score
1	34	100%	1.00	1584	53.30%	0.33	33	88.50%	0.6
2	54	100%	1.00	1635	60%	0.26	32	90.80%	0.78
3	30	100%	1.00	690	76%	0.38	31	94.40%	0.83
4	44	97.40%	0.99	691	68.80%	0.33	31	71.60%	0.63
5	61	93.30%	0.96	699	75%	0.37	31	92.80%	0.77
6	69	91.70%	0.95	693	70.80%	0.41	31	63.10%	0.61

AUDIO DOMAIN RESULTS

			SDR Gain	(db)	Word Error Rate (%)			
		Acuity	DPRNN	SuDoRMRF	Raw	Acuity	DPRNN	SuDoRMRF
Single Source	Source 1	1.92	-1.803	-0.249	6.02	1.95	60.43	47.075
Two Sources	Source 1	3.194	-1.094	0.296	79.02	5.08	95.5	95.95
	Source 2	10.822	1.107	0.104	87.82	5.34	78.13	75.4
Three Sources	Source 1	5.309	0.2899	-	100	15.49	100	-
	Source 2	7.025	-0.192	-	100	3.13	92.1	-
	Source 3	4.835	-0.145	-	100	28.425	95.5	-

Experiment 1: Static Subject Audio

Experiment 2: Mobile Subject Audio

04

CONCLUSION

+

LIMITATIONS AND FUTURE WORK

+

- Real-time Point Cloud Streaming and Rendering: Acuity does not address issues of streaming point clouds to the end user or rendering point clouds for viewing
- **Scaling up Acuity:** Acuity currently utilizes a two camera + one microphone setup, and may benefit from the introduction of additional sensors
- **Environmental Conditions:** The LiDAR camera performs poorly in low light situations, and saturates in the presence of direct sunlight

ACKNOWLEDGEMENTS

